Self-assembled Peptide-pi-electron Supramolecular Polymers for Bioinspired Energy Harvesting, Transport and Management

Project Personnel

John Tovar

Principal Investigator

Johns Hopkins University

Email

Andrew Ferguson

University of Chicago

Email

Howard Katz

Johns Hopkins University

Email

Funding Divisions

Division of Materials Research (DMR), Division of Chemistry (CHE), Office of Multidisciplinary Activities (OMA)

Nature exquisitely controls the arrangement of key pigments during photosynthesis to harness solar energy. Exerting reliable control over engineered molecular materials in the crucial 10-100 nanometer regime, thousands of times smaller than a millimeter, remains a challenge. This project develops functional molecular superstructures via molecular synthesis, biologically inspired self-assembly, electronic measurements, molecular simulation, and data-driven molecular discovery and engineering. The PIs guide the next generation of materials and data scientists of diverse socio-economic background while promoting tight integration and mutually reinforcing feedback between computation and experiment towards the discovery and development of multi-molecule assemblies with tailored structure and function.

Publications

Effect of Core Oligomer Length on the Phase Behavior and Assembly of p-Conjugated Peptides
E. R. Jira, K. Shmilovich, T. S. Kale, A. Ferguson, J. D. Tovar, and C. M. Schroeder
4/1/2020
Discovery of Self-Assembling pi-Conjugated Peptides by Active Learning-Directed Coarse-Grained Molecular Simulation
K. Shmilovich, R. A. Mansbach, H. Sidky, O. E. Dunne, S. S. Panda, J. D. Tovar, and A. L. Ferguson
3/1/2020
Computational Discovery of High Charge Mobility Self-assembling p-conjugated Peptides
K. Shmilovich, Y. F. Yao, J. D. Tovar, H. E. Katz, A. Schleife, and A. L. Ferguson
2/1/2022
Hybrid Computational–experimental Data-driven Design of Self-assembling π-conjugated Peptides
K. Shmilovich, S. S. Panda, A. Stouffer, J. D. Tovar, and A. L. Ferguson
6/1/2022
Torsional Impacts on Quaterthiophene Segments Confined within Peptidic Nanostructures
T. S. Kale, H. A. M. Ardona, A. Ertel, and J. D. Tovar
1/1/2019
Computationally Guided Tuning of Peptide-Conjugated Perylene Diimide Self-Assembly
S. S. Panda, K. Shmilovich, N. S. M. Herringer, N. Marin, A. L. Ferguson, and J. D. Tovar
7/1/2021

View All Publications

Research Highlights

Self-assembled Peptide-p-electron Supramolular Polymers:Student Training and Dissemination
J. Tovar, H. Katz (Johns Hopkins U.) A. Ferguson (U. Chicago)
Self-assembled Peptide-p-electron Supramolular Polymers:Workforce Training, Outreach, and Data Sharing
J. Tovar, H. Katz (Johns Hopkins U.) A. Ferguson (U. Chicago)
Self-assembled Peptide-p-electron Supramolecular Polymers for Bioinspired Energy Harvesting, Transport, and Management
J. Tovar (Johns Hopkins U.)A. Ferguson (U. Chicago)
Self-assembled Peptide-p-electron Supramolular Polymers:FAIR Data and Student Training
J. Tovar, H. Katz (Johns Hopkins U.)A. Ferguson (U. Chicago)
Self-assembled Peptide-p-electron Supramolular Polymers:Code Sharing and Undergraduate Research
J. Tovar, H. Katz (Johns Hopkins U.) A. Ferguson (U. Chicago)
Conductive Organic-inorganic Nanostructures
J. Tovar and H. Katz (Johns Hopkins U.)
Self-assembled Peptide-p-electron Supramolecular Polymers
A. Ferguson
Machine Learning-enabled Computational Discovery of Self-assembling Biocompatible Nanoaggregates
J. Tovar (Johns Hopkins U.) A. Ferguson (U. Chicago)
Controlling Supramolecular Chirality in Peptide-p-peptide Networks
J. Tovar (Johns Hopkins U.) A. Ferguson (U. Chicago)
Self-assembled Peptide-p-electron Supramolecular Polymers for Bioinspired Energy Harvesting, Transport and Management
J. Tovar, H. Katz (Johns Hopkins U.)A. Ferguson (U. Chicago)
Self-assembled peptide-pi-electron supramolecular polymers for bioinspired energy harvesting, transport and management
Andrew Ferguson

View All Highlights