Hybrid Materials for Superfluorescent Quantum Emitters

Project Personnel

Kenan Gundogdu

Principal Investigator

North Carolina State University

Email

Franky So

Co-PI

North Carolina State University

Email

Yosuke Kanai

Co-PI

University of North Carolina, Chapel Hill

Email

Volker Blum

Co-PI

Duke University

Email

Funding Divisions

Division of Materials Research (DMR)

Particles interact at the smallest scale according to the laws of quantum physics, exhibiting wave-like properties. However, when a large number of particles cluster, their quantum characteristics are lost. Some materials, show quantum properties at very low temperatures. Notable examples are superconductors and superfluids. Unfortunately, the low temperature requirement limits their practical use in technology. Superfluorescence, a similar quantum effect involving light emission from a group of quantum emitters, has potential applications in entangled photon sources and tunable intense light sources. Surprisingly, superfluorescence has been achieved at room temperature using hybrid materials made of inorganic lead halide perovskites and organic molecules. This project aims to discover quantum materials that exhibit room temperature superfluorescence tunable across the visible spectra in the broader range of hybrid materials. The project serves the goals of the Materials Genomics Initiative by collecting materials data and scientific understanding and training an associated research and development workforce. The educational activities involve field trips from high schools serving economically disadvantaged communities to increase interest in STEM careers. Using research experience for undergraduate programs and collaboration with historically black colleges and universities in the vicinity, summer interns will be recruited. Annually, theory and experiment workshops will be organized to train early-career researchers on topics related to quantum phenomena in hybrid materials. A major broader impact of the project is the addition of materials data that relates macroscopic quantum properties to material properties in a general, open database "HybriD3," which is dedicated to providing curated materials data for the materials research and development community.