Grain Growth Beyond Isotropic Models: Microstructure Evolution with Experimentally-Derived Interface Properties

Project Personnel

Gregory Rohrer

Principal Investigator

Carnegie Mellon University

Email

Robert Suter

Carnegie Mellon University

Email

Kaushik Dayal

Carnegie Mellon University

Email

Funding Divisions

Division of Materials Research (DMR), Division of Mathematical Sciences (DMS), Civil, Mechanical and Manufacturing Innovation (CMMI)

The major goal of this project is to test the hypothesis that it is possible to predict how microstructures evolve on a grain-by-grain basis using 3D mesoscale simulations with rules for interface motion that incorporate experimentally determined interface properties.  We will test this hypothesis on alpha-Fe, Ni, and SrTiO3. The project begins with the experimental observation of microstructures by near field, high energy diffraction microscopy (nf-HEDM), and then the extraction of experimental properties. From the energies and velocities, we will determine the mobilities.  Combining data already in hand with data extracted from the nf-HEDM experiments, we will be able to specify both the structure and the properties needed to instantiate the phase field model for growth.  Comparisons between the simulated growth and measured growth will allow us to identify properties that might not have been correctly measured or mechanisms that are not reproduced by the model.  The comparison may also suggest more appropriate time and temperature annealing sequences for the experiments.

Research Highlights