Data Driven Discovery of Topological Phononic Materials
This DMREF project has demonstrated an alternative avenue for the prediction of new topological materials from simple spectroscopic features, addressing the DMREF value of “significantly accelerate materials discovery and development”. In particular, the synergy of machine-learning modeling with the experimental validation addresses the DMREF concept to “work synergistically in a closed loop fashion.” The broadening of materials candidates further supports the DMREF mission to foster the “translation of materials research toward application”.
Mingda Li, Massachusetts Institute of Technology
This DMREF project has demonstrated an alternative avenue for the prediction of new topological materials from simple spectroscopic features, addressing the DMREF value of “significantly accelerate materials discovery and development”. In particular, the synergy of machine-learning modeling with the experimental validation addresses the DMREF concept to “work synergistically in a closed loop fashion.” The broadening of materials candidates further supports the DMREF mission to foster the “translation of materials research toward application”.