Self-assembled Peptide-p-electron Supramolecular Polymers for Bioinspired Energy Harvesting, Transport and Management

Organic electronics offer a route toward electronically active biocompatible soft materials capable of interfacing with biological and living systems. Discovering new organic molecules capable of high charge mobility is challenging due to the vast size of molecular design space and the multi-scale nature of charge transport that requires modeling electrons, molecules, and supramolecular assemblies.

J. Tovar, H. Katz (Johns Hopkins U.)A. Ferguson (U. Chicago)

Organic  electronics  offer  a  route  toward  electronically  active biocompatible soft materials capable of interfacing with biological and living  systems.  Discovering  new  organic  molecules  capable  of  high charge mobility is challenging due to the vast size of molecular design space  and  the  multi-scale  nature  of  charge  transport  that  requires modeling electrons, molecules, and supramolecular assemblies.

 

We  developed  a  multi-scale  screening  paradigm  coupling  (i)  all-atom  molecular  dynamics  to  predict  supramolecular  structures,  (ii) density functional theory to compute chemical stability, reorganization energy,  and  charge  transfer  integrals,  and  (iii)  Marcus  theory  to predict  charge  mobility.  This  integrated  virtual  screening  platform enabled   us   to   identify   new   synthetic   peptide-based   molecules capable  of  producing  self-assembled  biocompatible  nanoaggregates with predicted hole mobilities of 0.224 cm2V/s and electron mobilities of 0.143 cm2V/s, and uncovered design rules for high charge mobility.

 

This  work  embraced  the  MGI  philosophy  in  its  use  of  high-performance  computation  and  multi-scale  methods  to  accelerate advanced materials discovery. It was recognized as an editor’s choice “HOT” article in Molecular Systems Design & Engineering.

Designing Materials to Revolutionize and Engineer our Future (DMREF)