Computational Chemistry to Accelerate Development of Long Wave Infrared Polymers
This project will develop plastic optical materials to create lenses, windows, and optical elements for long wave infrared (LWIR) thermal imaging systems. IR thermal imaging and optical technologies are critical across the defense and military sectors, while the potential of IR thermal imaging and detection for applications in consumer electronics, transportation, medical imaging, security and robotics have also been known for decades. However, the high cost of IR cameras & detectors has impeded widespread use of these systems in consumer markets. In the vast majority of these imaging systems, expensive, inorganic semiconductors are required for the fabrication of LWIR optical components. Importantly, one of the common materials used in these efforts, germanium, has been identified as a US critical mineral, a lack of which would profoundly impact US defense capabilities. Hence, the development of new inexpensive and moldable polymers for use as LWIR plastic optics would be a significant advance to lower the cost of LWIR cameras and ensure US national security.
To address this challenging problem, this interdisciplinary project has been launched in collaboration with scientists at the Air Force Research Laboratory (AFRL), and it will harness a wide range of computational tools and machine learning capabilities to accelerate materials discovery. Thus, the project closely aligns with the Materials Genome Initiative for Global Competitiveness (MGI).
To address this challenging problem, this interdisciplinary project has been launched in collaboration with scientists at the Air Force Research Laboratory (AFRL), and it will harness a wide range of computational tools and machine learning capabilities to accelerate materials discovery. Thus, the project closely aligns with the Materials Genome Initiative for Global Competitiveness (MGI).
Publications
View All Publications
Research Highlights
Engineering Infrared Transparency via Deuteration
J. Pyun, J. Njardarson, R. Norwood, JL Bredas, (U. Arizona); N. Godman (AFRL)
5/3/2024