Multiscale Theory for Designing Hierarchical Organic Materials formed by Self-assembly
We explored new hierarchical assemblies of molecules as 2D and 3D crystalline materials. Using an integrated approach that unites synthesis, characterization and simulation together, we showed how molecule-scale dynamics impacts large-scale assembly of molecules at interfaces. We learned how macrocycle assembly depends on rigidity, cooperativity, sidechains, monomer sequence, dynamics, processing, ions and stacking.
We also created a totally new class of fluorescent materials that are the brightest reported. They are called small-molecule ionic-isolation lattices (SMILES). The simplicity, generality, and superior properties of SMILES enables a new platform for programming optical properties seamlessly from molecules to materials.
Publications
View All Publications