Self Assembly with DNA-labeled Colloidal Particles and DNA Nanostructures
A potentially vast synergy lies in the combination of colloidal assembly and DNA nanotechnology. Instead of mediating the interactions between particles by using DNA linkers (the current state of the art), one could control these interactions using more complex and potentially dynamic DNA nanostructures in solution. This project seeks to develop a fundamental understanding of how (dynamic) DNA nanostructures can control and program colloidal self-assembly. By putting this concept on a strong fundamental footing, it will be possible to exploit it to maximum effect through the design of DNA reaction networks that solve essential challenges to making colloidal self-assembly a practical materials fabrication platform. The set of possible interactions between building blocks is so large that this design space can only be systematically explored with a combined attack from theory, numerical simulation, and experiment. The project aims both to discover the fundamental principles underlying DNA particle-nanostructure interactions and to create new materials from plasmonic molecules to metafluids with immediate technological impact.