Multiscale Design of Hard and High Temperature Resistant Coatings by Computation and Experiment
The focus of this research is the discovery of new coatings working under extreme conditions. This project involves an interdisciplinary effort to conduct multiscale design of hard and high temperature resistant (Si,Zr)-B-C-N coatings which are thermally stable and oxidation resistant for high temperature (>1500o C) applications. The project couples multiscale computations and experiment to merge the high-temperature oxidation resistant properties of Si-B-C-N and high hardness properties of Zr-B-C-N systems. The predictive effort spans from atomistic to multiscale distinct element method simulations to formulate solid predictions of the optimized compositions. These predictions will provide critical guidance for synthesizing coatings with targeted properties. This research is far reaching as it can enable new concepts for protective coatings and the development of a new multiscale tool to predict materials' response. Molecular dynamics investigation will address the fundamental issue of combining desirable properties by varying chemical composition and structure. The application of the distinct element modeling down to the nanoscale represents a new powerful tool to simulate the global behavior, allowing the design of future materials at large.