AI-enabled Automated Design of Ultrastrong and Ultraelastic Metallic Alloys

Project Personnel

Liang Qi

Principal Investigator

University of Michigan, Ann Arbor

Yang Chen


University of Michigan, Ann Arbor

Yufeng Zheng


University of Nevada, Reno

Feng Yan


Arizona State University

Funding Divisions

Division of Materials Research (DMR), Division of Mathematical Sciences (DMS), Civil, Mechanical and Manufacturing Innovation (CMMI)

The traditional trial-and-error approach for discovering new alloys has become increasingly expensive and time-consuming. This Designing Materials to Revolutionize and Engineer our Future (DMREF) project aims to leverage the power of artificial intelligence to enable the rapid and automated design of metallic alloys capable of withstanding both extreme stress and recoverable elastic deformation before permanent plastic deformation. The potential candidate alloys are complex concentrated alloys that are consisted of multiple high-concentration chemical elements. These alloys contain intricate fluctuations of both chemical elements and atomic positions within metallic crystals. The tremendous degrees of freedom in these fluctuations obstruct the efficient search for alloys with peak strength and peak elastic deformation limit. To overcome this barrier, the research team will employ artificial intelligence, computational modeling, and experimental tools to design, synthesize, and test ultrastrong and ultraelastic metallic alloys. A unique two-stage automated research workflow that transits from a data-driven approach to a physics-based approach will be constructed based on integrations of artificial intelligence techniques and physical models. Such integrations will enhance the understanding of deformation mechanisms in complex materials, enabling their use in structural and functional applications. This research team with diverse backgrounds will provide incorporative opportunities for undergraduate and graduate students to learn both materials science and artificial intelligence. Moreover, this project is committed to promoting diversity, equity, and inclusion in research and education. The research team will actively engage underrepresented minority students in research projects through education and outreach activities. The innovative strategies developed through this research, enabled by artificial intelligence, will have transformative impacts not only on metallic alloy design but also on the development of multifunctional materials and manufacturing processes.

Designing Materials to Revolutionize and Engineer our Future (DMREF)