Skip to main content

Living Biotic-abiotic Materials with Temporally Programmable Actuation

Project Personnel

Rae Robertson-Anderson

Principal Investigator

University of San Diego

Michael Rust

University of Chicago

Megan Valentine

University of California, Santa Barbara

Jennifer Ross

Syracuse University

Moumita Das

Rochester Institute of Technology

Funding Divisions

Office of Multidisciplinary Activities (OMA), Division Of Materials Research (DMR)

A team of five physicists, biologists, and engineers aims to design and create a new class of self-directed, programmable, and reconfigurable materials inspired by cells and capable of producing force and motion. This approach will capitalize on two important design principles of living organisms: (1) cells are composite in nature to meet numerous functional demands, and (2) decision-making and timing are achieved through biomolecular circuitry. 

This effort will couple synthetic hydrogels to living layers of active polymer composites infused with cellular timing circuits to produce next-generation materials that self-actuate programmable cycles of work and motion. The proof-of-concept design will be a gap-closing micro-actuator that closes upon exposure to light and then autonomously re-opens at times and locations programmed into the embedded cell circuits. The material development aims, customized high-throughput characterization, and publicly shared property-formulation libraries will empower the broader Materials Genome Initiative (MGI) community to manufacture and deploy such disruptive materials of the future. The effort will provide opportunities to a diverse set of undergraduate, post-baccalaureate, graduate student, and postdoctoral researchers to broaden the STEM-trained workforce pool. Specifically, the effort will build a new undergraduate research and professional development program with students pursuing interdisciplinary materials research across the five campuses. By developing a fundamental understanding of how to manufacture and control such materials, this project will enable exciting future applications for self-healing infrastructure, self-regulating delivery vehicles, self-propulsive materials, micro-robotics, and programmable dynamic prosthetics.

Publications

BARCODE: high throughput screening and analysis of soft active materials
Q. Chen, A. Sriram, A. Das, K. Matic, M. Hendija, K. Tonry, J. L. Ross, M. Das, R. J. McGorty, R. M. Robertson-Anderson, and M. T. Valentine
12/31/2025
Rigidity Governs Entrainment of Bacteria Cells in Biopolymer Scaffolds
K. Matic, N. Krishnan, M. Das, M. J. Rust, M. T. Valentine, J. L. Ross, and R. M. Robertson-Anderson
10/7/2025
Kinesin‐Driven De‐Mixing of Cytoskeleton Composites Drives Emergent Mechanical Properties
J. Sheung, C. Gunter, K. Matic, M. Sasanpour, J. L. Ross, P. Katira, M. T. Valentine, and R. M. Robertson‐Anderson
4/10/2025
Programming scheduled self-assembly of circadian materials
G. Leech, L. Melcher, M. Chiu, M. Nugent, S. Juliano, L. Burton, J. Kang, S. J. Kim, S. Roy, L. Farhadi, J. L. Ross, M. Das, M. J. Rust, and R. M. Robertson-Anderson
1/2/2025
Active and passive crosslinking of cytoskeleton scaffolds tune the effects of cell inclusions on composite structure
K. Matic, N. Krishnan, E. Frank, M. Arellano, A. Sriram, M. Das, M. T. Valentine, M. J. Rust, R. M. Robertson-Anderson, and J. L. Ross
1/1/2025
Data-Driven Framework for the Prediction of PEGDA Hydrogel Mechanics
Y. Tang, M. Levin, O. G. Long, C. D. Eisenbach, N. Cohen, and M. T. Valentine
12/10/2024
Morphological control of bundled actin networks subject to fixed-mass depletion
J. Clarke, L. Melcher, A. D. Crowell, F. Cavanna, J. R. Houser, K. Graham, A. M. Green, J. C. Stachowiak, T. M. Truskett, D. J. Milliron, A. M. Rosales, M. Das, and J. Alvarado
8/21/2024
Scale-dependent interactions enable emergent microrheological stress response of actin–vimentin composites
J. Pinchiaroli, R. Saldanha, A. E. Patteson, R. M. Robertson-Anderson, and B. J. Gurmessa
1/1/2024
Convolutional neural networks applied to differential dynamic microscopy reduces noise when quantifying heterogeneous dynamics
G. Martinez, J. Siu, S. Dang, D. Gage, E. Kao, J. C. Avila, R. You, and R. McGorty
1/1/2024
Mapping deformation dynamics to composition of topologically-active DNA blends
K. R. Peddireddy, R. McGorty, and R. M. Robertson-Anderson
1/1/2024
Reentrant rigidity percolation in structurally correlated filamentous networks
J. Michel, G. von Kessel, T. W. Jackson, L. J. Bonassar, I. Cohen, and M. Das
11/30/2022
Reconstituting and Characterizing Actin-Microtubule Composites with Tunable Motor-Driven Dynamics and Mechanics
M. Sasanpour, D. H. Achiriloaie, G. Lee, G. Leech, M. Hendija, K. A. Lindsay, J. L. Ross, R. J. McGorty, and R. M. Robertson-Anderson
8/25/2022

View All Publications

Research Highlights

Active and Passive Crosslinking of Cytoskeleton Scaffolds Tune the Effects of Cell Inclusions on Composite Structures
R. Anderson (U. San Diego), J. Ross (Syracuse), M. Rust (U. Chicago), M. Valentine (UCSB), M. Das (Rochester)
2/12/2026
DMREF at 2025 APS Meeting
Rae Robertson-Anderson, University of San Diego
2/12/2026
BARCODE: High Throughput Screening and Analysis of Soft Active Matter
R. Anderson (U. San Diego), J. Ross (Syracuse) M. Valentine (UCSB), M. Das (Rochester)
2/12/2026
Frontiers in Soft Matter and Macromolecular Networks
Rae Robertson-Anderson, University of San Diego
2/12/2026
Hactive Matter: Data-driven Discovery through Hackathon-based Cross-disciplinary Coding
Rae Robertson-Anderson (University of San Diego) Megan T. Valentine (UC Santa Barbara)
2/12/2026
Frontiers in Soft Matter and Macromolecular Networks
Rae Robertson-Anderson (University of San Diego)
2/12/2026
Rigidity Governs Entrainment of Bacteria Cells in Biopolymer Scaffolds
R.Anderson (U. San Diego), J. Ross (Syracuse), M. Rust (U. Chicago), M. Valentine (UCSB), M. Das (Rochester)
2/12/2026
BARCODE: Biomaterial Activity Readouts to Categorize, Optimize, Design, and Engineer
Rae Robertson-Anderson (University of San Diego) Megan T. Valentine (UC Santa Barbara)
2/12/2026
Kinesin-drive De-mixing of Cytoskeleton Composites Drives Emergent Mechanical Properties
Rae Robertson-Anderson (U. San Diego) M. Valentine (UCSB), J. Ross (Syracuse U.)
2/12/2026

View All Highlights

NSF Logo

Any opinions, findings, and conclusions or recommendations expressed on this website are those of the participants and do not necessarily reflect the views of the National Science Foundation or the participating institutions. This site is maintained collaboratively by principal investigators with Designing Materials to Revolutionize and Engineer our Future awards, independent of the NSF.

DMREF Logo