Acoustically Transformative Materials
Many studies have focused on developing materials for conventional acoustic applications, such as ultrasound imaging, sound insulation, and geological logging. However, the design of materials that actively respond to sound and concurrently shift their acoustic and optical characteristics remains in its infancy. The goal of this project is to design acoustically responsive materials that alter their chemical structure, physical properties, and object shapes whenever they interact with sound waves enabling active modulation of acoustic properties including speed of sound, attenuation, and phononic band gaps. If compared to electromagnetic radiation, sound waves possess unique physical characteristics as they readily propagate through optically non-transparent materials, including liquids, solids, and gels (e.g., human body), where direct application of conventional stimuli, such as light and electric fields, is either physically or physiologically prohibited. This enables non-invasive interrogation of a wide range of materials properties and remote activation of various mechanochemical processes. Moreover, similar to electromagnetic radiation, sound can be focused both in space and in time. This opens intriguing opportunities to perform local modifications in a time-controlled, sequential manner. These materials may be utilized both in materials engineering for acoustic lithography and self-healing and in biomedical applications including non-invasive surgery, diagnostics, and drug-delivery.
Publications
View All Publications