Uncovering Mechanisms of Grain Boundary Migration in Polycrystals for Predictive Simulations of Grain Growth

Project Personnel

Gregory Rohrer

Principal Investigator

Carnegie Mellon University

Email

Elizabeth Holm

Carnegie Mellon University

Email

Amanda Krause

University of Florida

Email

Kaushik Dayal

Carnegie Mellon University

Email

Funding Divisions

Division of Materials Research (DMR)

Most solid materials, including metals, ceramics, and even some polymers, have an internal network of grain boundaries that separate individual crystals. This grain boundary network strongly influences materials properties and, therefore, is important for the design of automobiles, aircraft, computers, and many other devices. The goal of this research is to develop accurate predictive simulations for the evolution of the grain boundary network in metals and ceramics. These simulations will accelerate the incorporation of polycrystalline components into devices and structures by defining processing conditions to achieve specific microstructures and properties. The project will rely on iterative feedback between experimental observations of grain growth, new theories for grain boundary migration, and computer simulations of the evolution of the grain boundary network. In this way, it is aligned with the Materials Genome Initiative.

Publications

Impact of grain boundary energy anisotropy on grain growth
S. K. Naghibzadeh, Z. Xu, D. Kinderlehrer, R. Suter, K. Dayal, and G. S. Rohrer
9/19/2024
Grain boundary migration in polycrystalline α-Fe
Z. Xu, Y. Shen, S. K. Naghibzadeh, X. Peng, V. Muralikrishnan, S. Maddali, D. Menasche, A. R. Krause, K. Dayal, R. M. Suter, and G. S. Rohrer
1/1/2024
Deformation Decomposition Versus Energy Decomposition for Chemo- and Poro-Mechanics
J. Chua, M. Karimi, P. Kozlowski, M. Massoudi, S. Narasimhachary, K. Kadau, G. Gazonas, and K. Dayal
8/25/2023
Grain Boundary Migration in Polycrystals
G. S. Rohrer, I. Chesser, A. R. Krause, S. K. Naghibzadeh, Z. Xu, K. Dayal, and E. A. Holm
7/3/2023
Extreme Abnormal Grain Growth: Connecting Mechanisms to Microstructural Outcomes
C. E. Krill, E. A. Holm, J. M. Dake, R. Cohn, K. Holíková, and F. Andorfer
7/3/2023
Energy dissipation by grain boundary replacement during grain growth
Z. Xu, C. M. Hefferan, S. F. Li, J. Lind, R. M. Suter, F. Abdeljawad, and G. S. Rohrer
6/1/2023
Parallel simulation via SPPARKS of on-lattice kinetic and Metropolis Monte Carlo models for materials processing
J. A. Mitchell, F. Abdeljawad, C. Battaile, C. Garcia-Cardona, E. A. Holm, E. R. Homer, J. Madison, T. M. Rodgers, A. P. Thompson, V. Tikare, E. Webb, and S. J. Plimpton
5/9/2023
Relative grain boundary energies from triple junction geometry: Limitations to assuming the Herring condition in nanocrystalline thin films
M. J. Patrick, G. S. Rohrer, O. Chirayutthanasak, S. Ratanaphan, E. R. Homer, G. L. Hart, Y. Epshteyn, and K. Barmak
1/1/2023
Observations of unexpected grain boundary migration in SrTiO3
V. Muralikrishnan, H. Liu, L. Yang, B. Conry, C. J. Marvel, M. P. Harmer, G. S. Rohrer, M. R. Tonks, R. M. Suter, C. E. Krill, and A. R. Krause
1/1/2023
Comparison of simulated and measured grain volume changes during grain growth
X. Peng, A. Bhattacharya, S. K. Naghibzadeh, D. Kinderlehrer, R. Suter, K. Dayal, and G. S. Rohrer
3/14/2022
Statistical behaviour of interfaces subjected to curvature flow and torque effects applied to microstructural evolutions
S. Florez, K. Alvarado, B. Murgas, N. Bozzolo, D. Chatain, C. E. Krill, M. Wang, G. S. Rohrer, and M. Bernacki
1/1/2022

View All Publications

Research Highlights

Broader Impact Through the 3D Microstructure Workshop
Gregory S. Rohrer, Carnegie Mellon University
5/22/2024
Data Flow Between Experiment, Continuum Models, and Atomistic Models
Gregory S. Rohrer, Carnegie Mellon University
5/22/2024
A New View of Grain Boundary Migration in Polycrystals
G. Rohrer, K. Dayal (Carnegie Mellon University) A. Krause (University of Florida)
5/22/2024

Designing Materials to Revolutionize and Engineer our Future (DMREF)