Improved Carbon Dioxide Capture under High Humidity
CALF-20, a Zn-triazolate-based metal−organic framework (MOF), is one of the most promising adsorbent materials for CO2 capture. However, competitive adsorption of water severely limits its performance when the relative humidity (RH) exceeds 40%, limiting the potential implementation of CALF-20 in practical settings where CO2 is saturated with moisture, such as post-combustion flue gas. In this work, three newly designed MOFs related to CALF-20, denoted as NU-220, CALF-20M-w, and CALF-20M-e that feature hydrophobic methyltriazolatelinkers, are presented. Inclusion of methyl groups in the linker is proposed as a strategy to improve the uptake of CO2 in the presence of water. Notably, both CALF-20M-w and CALF-20M-e retain over 20% of their initial CO2 capture efficiency at 70% RH - a threshold at which CALF-20 shows negligible CO2 uptake. Grand canonical Monte Carlo simulations reveal that the methyl group hinders water network formation in the pores of CALF-20M-w and CALF-20M-e and enhances their CO2 selectivity over N2 in the presence of a high moisture content. Overall, this straightforward design strategy has afforded more robust sorbents that can potentially meet the challenge of effectively capturing CO2 in practical industrial applications.