GOALI: Discovering Materials for CO2 Capture in the Presence of Water via Integrated Experiment, Modeling, and Theory

Project Personnel

Randall Snurr

Principal Investigator

Northwestern University

Email

T. Grant Glover

Email

Joseph Hupp

Northwestern University

Email

Omar Farha

Northwestern University

Email

William Morris

NuMat Technologies, Inc.

Email

Funding Divisions

Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET), Division of Materials Research (DMR)

The concentration of carbon dioxide in the atmosphere has risen rapidly over the past century, creating significant concerns about global warming and ocean acidification. Carbon capture and sequestration is widely viewed as an essential tool, along with other technologies such as wind and solar energy, for keeping atmospheric CO2 levels from rising further. This project focuses on developing new materials for selective adsorption of CO2 versus N2. A primary emphasis will be the effect of water on CO2/N2 selectivity and CO2 capacity. The main goal of the proposed work is to develop integrated simulation, theoretical, and experimental methods for understanding the effect of water on CO2/N2 separations in nanoporous materials and to use these tools to speed up the discovery of new materials for CO2 capture. The development of new materials and technologies that enable cost-effective carbon capture at high-volume point sources is viewed by the International Energy Agency as an essential component of a many-pronged approach to combatting climate change. The project will contribute to the education of graduate and undergraduate students in a highly interdisciplinary project. Web and video-based education and outreach activities will reach a wider audience.

Publications

Metal-organic frameworks for water vapor adsorption
L. Shi, K. O. Kirlikovali, Z. Chen, and O. K. Farha
2/1/2024
Tailoring Hydrophobicity and Pore Environment in Physisorbents for Improved Carbon Dioxide Capture under High Humidity
X. Wang, M. Alzayer, A. J. Shih, S. Bose, H. Xie, S. M. Vornholt, C. D. Malliakas, H. Alhashem, F. Joodaki, S. Marzouk, G. Xiong, M. Del Campo, P. Le Magueres, F. Formalik, D. Sengupta, K. B. Idrees, K. Ma, Y. Chen, K. O. Kirlikovali, T. Islamoglu, K. W. Chapman, R. Q. Snurr, and O. K. Farha
1/31/2024
Challenges and Opportunities: Metal–Organic Frameworks for Direct Air Capture
S. Bose, D. Sengupta, T. M. Rayder, X. Wang, K. O. Kirlikovali, A. K. Sekizkardes, T. Islamoglu, and O. K. Farha
10/12/2023
Unveiling Unexpected Modulator-CO2 Dynamics within a Zirconium Metal–Organic Framework
T. M. Rayder, F. Formalik, S. M. Vornholt, H. Frank, S. Lee, M. Alzayer, Z. Chen, D. Sengupta, T. Islamoglu, F. Paesani, K. W. Chapman, R. Q. Snurr, and O. K. Farha
5/15/2023
Adsorption of a PFAS Utilizing MOF-808: Development of an Undergraduate Laboratory Experiment in a Capstone Course
T. M. VanOursouw, T. Rottiger, K. A. Wadzinski, B. E. VanderWaal, M. J. Snyder, R. T. Bittner, O. K. Farha, S. C. Riha, and J. E. Mondloch
2/3/2023
Rational design of stable functional metal–organic frameworks
Z. Chen, K. O. Kirlikovali, L. Shi, and O. K. Farha
1/1/2023
Insights into dual-functional modification for water stability enhancement of mesoporous zirconium metal–organic frameworks
J. Liu, R. Anderson, K. M. Schmalbach, T. R. Sheridan, Z. Wang, N. M. Schweitzer, A. Stein, N. A. Mara, D. Gomez-Gualdron, and J. T. Hupp
1/1/2022
Exchange of coordinated carboxylates with azolates as a route to obtain a microporous zinc–azolate framework
K. M. Fahy, M. R. Mian, M. C. Wasson, F. A. Son, T. Islamoglu, and O. K. Farha
1/1/2022

View All Publications

Designing Materials to Revolutionize and Engineer our Future (DMREF)