Data Driven Discovery of Synthesis Pathways and Distinguishing Electronic Phenomena of 1D Van der Waals Bonded Solids

Project Personnel

Felipe Homrich da Jornada

Principal Investigator

Stanford University

Email

Ludwig Bartels

University of California, Riverside

Email

Alexander Balandin

University of California, Riverside

Email

Evan Reed

Stanford University

Email

Funding Divisions

Division of Materials Research (DMR), Electrical, Communications and Cyber Systems (ECCS)

Bulk crystals of graphite and other materials composed of 2-dimensional van der Waals (vdW) layers exhibit numerous important properties in the bulk that are preserved as the material is thinned to atomic thickness, e.g. the high electrical conductivity of graphene. This distinguishes them from native bulk materials that do not exhibit such vdW layered structure, such as copper, whose properties change dramatically as it is thinned below a few atomic layers. Unlike 2D layered materials, the 1-dimensional vdW materials of this project have received relatively little research attention, but are likely to exhibit many of the useful properties of their 2D counterparts. One hypothesis is that the presence of vdW gaps and the absence of dangling bonds and large single crystal domains inhibits carrier scattering at the surface of such materials and, thus, allows for electronic transport at a resistivity almost independent of wire cross section. Recent synthesis work by the project participants has revealed excellent transport properties of such materials when thinned to nanoscale cross sections, rivaling the favorable characteristics of the native bulk form of copper, with potential applications in the miniaturization of electronic devices. Another hypothesis is that these materials may be more likely to exhibit electronic or structural phase changes that can be engineered for low power electronic memories and other applications.

Publications

Machine-Learning-Driven Expansion of the 1D van der Waals Materials Space
Y. Zhu, E. R. Antoniuk, D. Wright, F. Kargar, N. Sesing, A. D. Sendek, T. T. Salguero, L. Bartels, A. A. Balandin, E. J. Reed, and F. H. da Jornada
10/27/2023
Quantum Composites with Charge‐Density‐Wave Fillers
Z. Barani, T. Geremew, M. Stokey, N. Sesing, M. Taheri, M. J. Hilfiker, F. Kargar, M. Schubert, T. T. Salguero, and A. A. Balandin
3/22/2023
Study of ZrS3-based field-effect transistors toward the understanding of the mechanisms of light-enhanced gas sensing by transition metal trichalcogenides
K. Drozdowska, A. Rehman, S. Rumyantsev, M. Wurch, L. Bartels, A. Balandin, J. Smulko, and G. Cywiński
3/1/2023
Low-frequency noise in ZrS3 van der Waals semiconductor nanoribbons
A. Rehman, G. Cywinski, W. Knap, J. Smulko, A. A. Balandin, and S. Rumyantsev
2/27/2023
Elemental excitations in MoI3 one-dimensional van der Waals nanowires
F. Kargar, Z. Barani, N. R. Sesing, T. T. Mai, T. Debnath, H. Zhang, Y. Liu, Y. Zhu, S. Ghosh, A. J. Biacchi, F. H. da Jornada, L. Bartels, T. Adel, A. R. Hight Walker, A. V. Davydov, T. T. Salguero, R. K. Lake, and A. A. Balandin
11/28/2022
Low‐Frequency Current Fluctuations in Quasi‐1D (TaSe4)2I Weyl Semimetal Nanoribbons
S. Ghosh, F. Kargar, N. R. Sesing, Z. Barani, T. T. Salguero, D. Yan, S. Rumyantsev, and A. A. Balandin
11/20/2022
One-dimensional van der Waals materials—Advent of a new research field
A. A. Balandin, R. K. Lake, and T. T. Salguero
7/25/2022
Machine Learning Modeling for Accelerated Battery Materials Design in the Small Data Regime
A. D. Sendek, B. Ransom, E. D. Cubuk, L. A. Pellouchoud, J. Nanda, and E. J. Reed
6/29/2022
One-dimensional van der Waals quantum materials
A. A. Balandin, F. Kargar, T. T. Salguero, and R. K. Lake
5/1/2022
Metallic vs. semiconducting properties of quasi-one-dimensional tantalum selenide van der Waals nanoribbons
F. Kargar, A. Krayev, M. Wurch, Y. Ghafouri, T. Debnath, D. Wickramaratne, T. T. Salguero, R. K. Lake, L. Bartels, and A. A. Balandin
1/1/2022
Metallic Transport in Chemical Vapor Deposition ZrTe3 Nanoribbons on a SiO2 Wafer Substrate
J. Jin, M. Wurch, S. Baraghani, D. J. Coyle, T. A. Empante, F. Kargar, A. A. Balandin, and L. Bartels
10/13/2021
Printed Electronic Devices with Inks of TiS3 Quasi-One-Dimensional van der Waals Material
S. Baraghani, J. Abourahma, Z. Barani, A. Mohammadzadeh, S. Sudhindra, A. Lipatov, A. Sinitskii, F. Kargar, and A. A. Balandin
9/23/2021
Electromagnetic-Polarization-Selective Composites with Quasi-1D Van der Waals Fillers: Nanoscale Material Functionality That Mimics Macroscopic Systems
Z. Barani, F. Kargar, Y. Ghafouri, S. Baraghani, S. Sudhindra, A. Mohammadzadeh, T. T. Salguero, and A. A. Balandin
4/30/2021
Electrically Insulating Flexible Films with Quasi‐1D van der Waals Fillers as Efficient Electromagnetic Shields in the GHz and Sub‐THz Frequency Bands
Z. Barani, F. Kargar, Y. Ghafouri, S. Ghosh, K. Godziszewski, S. Baraghani, Y. Yashchyshyn, G. Cywiński, S. Rumyantsev, T. T. Salguero, and A. A. Balandin
2/12/2021

View All Publications

Research Highlights

Efficient Electromagnetic Shields in the GHz and Sub-THz Frequency Bands
Z. Barani, F. Kargar, Y. Ghafouri, S. Ghosh, K. Godziszewski, S. Baraghani, Y. Yashchyshyn, G. Cywinski, S. Rumyantsev, T. T. Salguero, and A. A. Balandin
1/1/2021
Unique Properties of One-Dimensional Materials
F. Homrich da Jornada (Stanford), A. A. Balandin, L. Bartels (U. CA – Riverside)

Designing Materials to Revolutionize and Engineer our Future (DMREF)