Data Driven Discovery of Synthesis Pathways and Distinguishing Electronic Phenomena of 1D Van der Waals Bonded Solids

Project Personnel

Felipe Homrich da Jornada

Principal Investigator

Stanford University

Email

Ludwig Bartels

University of California, Riverside

Email

Alexander Balandin

University of California, Riverside

Email

Evan Reed

Stanford University

Email

Funding Divisions

Division of Materials Research (DMR), Electrical, Communications and Cyber Systems (ECCS)

Bulk crystals of graphite and other materials composed of 2-dimensional van der Waals (vdW) layers exhibit numerous important properties in the bulk that are preserved as the material is thinned to atomic thickness, e.g. the high electrical conductivity of graphene. This distinguishes them from native bulk materials that do not exhibit such vdW layered structure, such as copper, whose properties change dramatically as it is thinned below a few atomic layers. Unlike 2D layered materials, the 1-dimensional vdW materials of this project have received relatively little research attention, but are likely to exhibit many of the useful properties of their 2D counterparts. One hypothesis is that the presence of vdW gaps and the absence of dangling bonds and large single crystal domains inhibits carrier scattering at the surface of such materials and, thus, allows for electronic transport at a resistivity almost independent of wire cross section. Recent synthesis work by the project participants has revealed excellent transport properties of such materials when thinned to nanoscale cross sections, rivaling the favorable characteristics of the native bulk form of copper, with potential applications in the miniaturization of electronic devices. Another hypothesis is that these materials may be more likely to exhibit electronic or structural phase changes that can be engineered for low power electronic memories and other applications.

Publications

Low-Frequency Current Fluctuations in Quasi-1D (TaSe4)2I Weyl Semimetal Nanoribbons
S. Ghosh, F. Kargar, N. R. Sesing, Z. Barani, T. T. Salguero, D. Yan, S. Rumyantsev, and A. A. Balandin
Nov 2022
Elemental Excitations in MoI3 One-dimensional van der Waals Nanowires
F. Kargar, Z. Barani, N. R. Sesing, T. T. Mai, T. Debnath, H. R. Zhang, Y. H. Liu, Y. B. Zhu, S. Ghosh, A. J. Biacchi, F. H. da Jornada, L. Bartels, T. Adel, A. H. Walker, A. V. Davydov, T. T. Salguero, R. K. Lake, and A. A. Balandin
Nov 2022
One-dimensional van der Waals Materials-Advent of a New Research Field
A. A. Balandin, R. K. Lake, and T. T. Salguero
Jul 2022
Machine Learning Modeling for Accelerated Battery Materials Design in the Small Data Regime
A. D. Sendek, B. Ransom, E. D. Cubuk, L. A. Pellouchoud, J. Nanda, and E. J. Reed
Jun 2022
One-dimensional van der Waals Quantum Materials
A. A. Balandin, F. Kargar, T. T. Salguero, and R. K. Lake
May 2022
Metallic vs. Semiconducting Properties of Quasi-one-dimensional Tantalum Selenide van der Waals Nanoribbons
F. Kargar, A. Krayev, M. Wurch, Y. Ghafouri, T. Debnath, D. Wickramaratne, T. T. Salguero, R. K. Lake, L. Bartels, and A. A. Balandin
Mar 2022
Metallic Transport in Chemical Vapor Deposition ZrTe3 Nanoribbons on a SiO2 Wafer Substrate
J. Jin, M. Wurch, S. Baraghani, D. J. Coyle, T. A. Empante, F. Kargar, A. A. Balandin, and L. Bartels
Oct 2021
Printed Electronic Devices with Inks of TiS3 Quasi-One-Dimensional van der Waals Material
S. Baraghani, J. Abourahma, Z. Barani, A. Mohammadzadeh, S. Sudhindra, A. Lipatov, A. Sinitskii, F. Kargar, and A. A. Balandin
Sep 2021
Electromagnetic-Polarization-Selective Composites with Quasi-1D Van der Waals Fillers: Nanoscale Material Functionality That Mimics Macroscopic Systems
Z. Barani, F. Kargar, Y. Ghafouri, S. Baraghani, S. Sudhindra, A. Mohammadzadeh, T. T. Salguero, and A. A. Balandin
Apr 2021
Electrically Insulating Flexible Films with Quasi-1D van der Waals Fillers as Efficient Electromagnetic Shields in the GHz and Sub-THz Frequency Bands
Z. Barani, F. Kargar, Y. Ghafouri, S. Ghosh, K. Godziszewski, S. Baraghani, Y. Yashchyshyn, G. Cywinski, S. Rumyantsev, T. T. Salguero
Feb 2021
High-frequency Current Oscillations in Charge-density-wave 1T-TaS2 Devices: Revisiting the “Narrow Band Noise” Concept
A. K. Geremew, S. Rumyantsev, B. Debnath, R. K. Lake, and A. A. Balandin
Apr 2020

Research Highlights

Unique Properties of One-Dimensional Materials
F. Homrich da Jornada (Stanford), A. A. Balandin, L. Bartels (U. CA – Riverside)