Grain Growth Beyond Isotropic Models: Microstructure Evolution with Experimentally-Derived Interface Properties

Project Personnel

Gregory Rohrer

Principal Investigator

Carnegie Mellon University

Email

Kaushik Dayal

Carnegie Mellon University

Email

Robert Suter

Carnegie Mellon University

Email

Funding Divisions

Division of Materials Research (DMR), Division of Mathematical Sciences (DMS), Civil, Mechanical and Manufacturing Innovation (CMMI)

The major goal of this project is to test the hypothesis that it is possible to predict how microstructures evolve on a grain-by-grain basis using 3D mesoscale simulations with rules for interface motion that incorporate experimentally determined interface properties.  We will test this hypothesis on alpha-Fe, Ni, and SrTiO3. The project begins with the experimental observation of microstructures by near field, high energy diffraction microscopy (nf-HEDM), and then the extraction of experimental properties. From the energies and velocities, we will determine the mobilities.  Combining data already in hand with data extracted from the nf-HEDM experiments, we will be able to specify both the structure and the properties needed to instantiate the phase field model for growth.  Comparisons between the simulated growth and measured growth will allow us to identify properties that might not have been correctly measured or mechanisms that are not reproduced by the model.  The comparison may also suggest more appropriate time and temperature annealing sequences for the experiments.

Publications

Comparison of simulated and measured grain volume changes during grain growth
X. Peng, A. Bhattacharya, S. K. Naghibzadeh, D. Kinderlehrer, R. Suter, K. Dayal, and G. S. Rohrer
3/14/2022
Energetic formulation of large‐deformation poroelasticity
M. Karimi, M. Massoudi, N. Walkington, M. Pozzi, and K. Dayal
1/10/2022
Grain boundary energies in yttria‐stabilized zirconia
S. J. Dillon, Y. Shen, and G. S. Rohrer
12/21/2021
Non-orthogonal computational grids for studying dislocation motion in phase field approaches
X. Peng, A. Hunter, I. J. Beyerlein, R. A. Lebensohn, K. Dayal, and E. Martinez
12/1/2021
Grain boundary velocity and curvature are not correlated in Ni polycrystals
A. Bhattacharya, Y. Shen, C. M. Hefferan, S. F. Li, J. Lind, R. M. Suter, C. E. Krill, and G. S. Rohrer
10/8/2021
The grain boundary stiffness and its impact on equilibrium shapes and boundary migration: Analysis of theΣ5, 7, 9, and 11 boundaries in Ni
R. D. Moore, T. Beecroft, G. S. Rohrer, C. M. Barr, E. R. Homer, K. Hattar, B. L. Boyce, and F. Abdeljawad
10/1/2021
Grain boundary energy function for α iron
R. Sarochawikasit, C. Wang, P. Kumam, H. Beladi, T. Okita, G. S. Rohrer, and S. Ratanaphan
9/1/2021
Surface growth in deformable solids using an Eulerian formulation
S. K. Naghibzadeh, N. Walkington, and K. Dayal
9/1/2021
Anomalous strain-energy-driven macroscale translation of grains during nonisothermal annealing
M. J. Higgins, J. Kang, G. Huang, D. Montiel, N. Lu, H. Liu, Y. Shen, P. Staublin, J. -. Park, J. D. Almer, P. Kenesei, P. G. Sanders, R. M. Suter, K. Thornton, and A. J. Shahani
7/21/2021
A 3D phase field dislocation dynamics model for body-centered cubic crystals
X. Peng, N. Mathew, I. J. Beyerlein, K. Dayal, and A. Hunter
1/1/2020
Importance of outliers: A three-dimensional study of coarsening in α -phase iron
Y. Shen, S. Maddali, D. Menasche, A. Bhattacharya, G. S. Rohrer, and R. M. Suter
6/27/2019
Grain boundary curvatures in polycrystalline SrTiO3: Dependence on grain size, topology, and crystallography
X. Zhong, M. N. Kelly, H. M. Miller, S. J. Dillon, and G. S. Rohrer
5/31/2019
Three-dimensional observations of grain volume changes during annealing of polycrystalline Ni
A. Bhattacharya, Y. Shen, C. M. Hefferan, S. F. Li, J. Lind, R. M. Suter, and G. S. Rohrer
4/1/2019
Determining grain boundary energies from triple junction geometries without discretizing the five-parameter space
Y. Shen, X. Zhong, H. Liu, R. M. Suter, A. Morawiec, and G. S. Rohrer
3/1/2019
Atomistic simulations of grain boundary energies in austenitic steel
S. Ratanaphan, R. Sarochawikasit, N. Kumanuvong, S. Hayakawa, H. Beladi, G. S. Rohrer, and T. Okita
1/7/2019
The grain boundary character distribution of highly twinned nanocrystalline thin film aluminum compared to bulk microcrystalline aluminum
G. S. Rohrer, X. Liu, J. Liu, A. Darbal, M. N. Kelly, X. Chen, M. A. Berkson, N. T. Nuhfer, K. R. Coffey, and K. Barmak
4/24/2017
On the crystallographic characteristics of nanobainitic steel
H. Beladi, V. Tari, I. B. Timokhina, P. Cizek, G. S. Rohrer, A. D. Rollett, and P. D. Hodgson
4/1/2017
The five-parameter grain boundary curvature distribution in an austenitic and ferritic steel
X. Zhong, D. J. Rowenhorst, H. Beladi, and G. S. Rohrer
1/1/2017
High-Energy X-Ray Diffraction Microscopy in Materials Science in Annual Review of Materials Research, Vol 50, 2020

View All Publications

Research Highlights

Designing Materials to Revolutionize and Engineer our Future (DMREF)